Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ISME Commun ; 4(1): ycae040, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38628812

ABSTRACT

Seawater intrusion into freshwater wetlands causes changes in microbial communities and biogeochemistry, but the exact mechanisms driving these changes remain unclear. Here we use a manipulative laboratory microcosm experiment, combined with DNA sequencing and biogeochemical measurements, to tease apart the effects of sulfate from other seawater ions. We examined changes in microbial taxonomy and function as well as emissions of carbon dioxide, methane, and nitrous oxide in response to changes in ion concentrations. Greenhouse gas emissions and microbial richness and composition were altered by artificial seawater regardless of whether sulfate was present, whereas sulfate alone did not alter emissions or communities. Surprisingly, addition of sulfate alone did not lead to increases in the abundance of sulfate reducing bacteria or sulfur cycling genes. Similarly, genes involved in carbon, nitrogen, and phosphorus cycling responded more strongly to artificial seawater than to sulfate. These results suggest that other ions present in seawater, not sulfate, drive ecological and biogeochemical responses to seawater intrusion and may be drivers of increased methane emissions in soils that received artificial seawater addition. A better understanding of how the different components of salt water alter microbial community composition and function is necessary to forecast the consequences of coastal wetland salinization.

2.
PLoS One ; 18(12): e0296128, 2023.
Article in English | MEDLINE | ID: mdl-38128024

ABSTRACT

Salinization of coastal freshwater wetlands is an increasingly common and widespread phenomenon resulting from climate change. The ecosystem consequences of added salinity are poorly constrained and highly variable across prior observational and experimental studies. We added 1.8 metric tons of marine salts to replicated 200 m2 plots within a restored forested wetland in Eastern North Carolina over the course of four years. Based on prior small-scale experiments at this site, we predicted that salinization would lead to slower tree growth and suppressed soil carbon cycling. Results from this large-scale field experiment were subtle and inconsistent over space and time. By the fourth year of the experiment, we observed the predicted suppression of soil respiration and a reduction of water extractable carbon from soils receiving salt treatments. However, we found no cumulative effects of four years of salinization on total soil carbon stocks, tree growth, or root biomass. We observed substantial variation in soil solution chemistry (notably, pH and base saturation) across replicated treatment blocks; the effective salt levels, ionic composition, and pH varied following treatment depending upon pre-existing differences in edaphic factors. Our multi-year monitoring also revealed an underlying trend of wetland acidification across the entire site, a suspected effect of ecosystem recovery following wetland restoration on former agricultural land. The overwhelming resistance to our salt treatments could be attributed to the vigor of a relatively young, healthy wetland ecosystem. The heterogeneous responses to salt that we observed over space and time merits further investigation into the environmental factors that control carbon cycling in wetlands. This work highlights the importance of multi-year, large-scale field experiments for investigating ecosystem responses to global environmental change.


Subject(s)
Forests , Sodium Chloride , Wetlands , Carbon , Soil/chemistry , Trees
3.
Science ; 377(6613): 1440-1444, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36137034

ABSTRACT

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Subject(s)
Forests , Global Warming , Isoptera , Wood , Animals , Carbon Cycle , Temperature , Tropical Climate , Wood/microbiology
4.
Chemosphere ; 308(Pt 2): 136310, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36088973

ABSTRACT

Wetlands are widely regarded as biogeochemical hotspots of highly toxic methylmercury (MeHg), mainly mediated by sulfate-reducing bacteria. In low-lying coastal wetlands, sea level rise, a phenomenon caused by global climate change, is slowly degrading numerous healthy freshwater forested wetlands into salt-degraded counterparts with a nickname "ghost forests", and eventually converting them to saltmarshes. However, little is known about the changes of mercury (Hg) methylation, bioaccumulation, and biomagnification along the forest-to-saltmarsh gradient. Here, we conducted extensive field sampling in three wetland states (healthy forested wetlands, salt-degraded forested wetlands, and saltmarsh) along a salinity gradient (from 0 to 9.4 ppt) in Winyah Bay, South Carolina, USA. We found that in our study wetland systems the saltmarshes had the lowest levels of both total Hg and MeHg in sediments and biota, as compared to healthy forested wetlands and saltwater-degraded ghost forests. Our results suggest that the slow conversion of forested wetland to saltmarsh could reduce net MeHg production in our study wetland systems, which we hypothesized that could be attributed to increased sulfate reduction and excessive buildup of sulfide in sediment that inhibits microbial Hg methylation, and/or reduced canopy density and increased photodegradation of MeHg. However, it should be noted that biogeochemical MeHg responses to salinity changes may be site-specific and we urge more similar studies in other wetland systems along a salinity gradient. Therefore, long-term salinization of coastal wetlands and the slow conversion of forests to marshes could decrease long-term exposure of toxic MeHg levels in coastal food webs that are similar to our system, and ultimately reduce human exposure to this neurotoxin.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring/methods , Humans , Mercury/analysis , Neurotoxins , Salinity , South Carolina , Sulfates , Sulfides , Water Pollutants, Chemical/analysis , Wetlands
5.
Article in English | MEDLINE | ID: mdl-33350055

ABSTRACT

Anthropogenic increases in nitrogen (N) and phosphorus (P) concentrations can strongly influence the structure and function of ecosystems. Even though lotic ecosystems receive cumulative inputs of nutrients applied to and deposited on land, no comprehensive assessment has quantified nutrient-enrichment effects within streams and rivers. We conducted a meta-analysis of published studies that experimentally increased concentrations of N and/or P in streams and rivers to examine how enrichment alters ecosystem structure (state: primary producer and consumer biomass and abundance) and function (rate: primary production, leaf breakdown rates, metabolism) at multiple trophic levels (primary producer, microbial heterotroph, primary and secondary consumers, and integrated ecosystem). Our synthesis included 184 studies, 885 experiments, and 3497 biotic responses to nutrient enrichment. We documented widespread increases in organismal biomass and abundance (mean response = +48%) and rates of ecosystem processes (+54%) to enrichment across multiple trophic levels, with no large differences in responses among trophic levels or between autotrophic or heterotrophic food-web pathways. Responses to nutrient enrichment varied with the nutrient added (N, P, or both) depending on rate versus state variable and experiment type, and were greater in flume and whole-stream experiments than in experiments using nutrient-diffusing substrata. Generally, nutrient-enrichment effects also increased with water temperature and light, and decreased under elevated ambient concentrations of inorganic N and/or P. Overall, increased concentrations of N and/or P altered multiple food-web pathways and trophic levels in lotic ecosystems. Our results indicate that preservation or restoration of biodiversity and ecosystem functions of streams and rivers requires management of nutrient inputs and consideration of multiple trophic pathways.

6.
Glob Chang Biol ; 23(8): 3064-3075, 2017 08.
Article in English | MEDLINE | ID: mdl-28039909

ABSTRACT

Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (Ea , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.


Subject(s)
Carbon/chemistry , Plant Leaves , Temperature , Alnus , Climate Change , Ecosystem , Rivers
7.
Ecol Lett ; 18(10): 1049-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26259672

ABSTRACT

Carbon and nitrogen cycles are coupled through both stoichiometric requirements for microbial biomass and dissimilatory metabolic processes in which microbes catalyse reduction-oxidation reactions. Here, we integrate stoichiometric theory and thermodynamic principles to explain the commonly observed trade-off between high nitrate and high organic carbon concentrations, and the even stronger trade-off between high nitrate and high ammonium concentrations, across a wide range of aquatic ecosystems. Our results suggest these relationships are the emergent properties of both microbial biomass stoichiometry and the availability of terminal electron acceptors. Because elements with multiple oxidation states (i.e. nitrogen, manganese, iron and sulphur) serve as both nutrients and sources of chemical energy in reduced environments, both assimilative demand and dissimilatory uses determine their concentrations across broad spatial gradients. Conceptual and quantitative models that integrate rather than independently examine thermodynamic, stoichiometric and evolutionary controls on biogeochemical cycling are essential for understanding local to global biogeochemical patterns.


Subject(s)
Carbon Cycle , Ecosystem , Nitrogen Cycle , Water Microbiology , Ammonium Compounds/chemistry , Biomass , Nitrates/chemistry , Thermodynamics
8.
Glob Chang Biol ; 19(10): 2976-85, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23749653

ABSTRACT

Coastal wetlands have the capacity to retain and denitrify large quantities of reactive nitrogen (N), making them important in attenuating increased anthropogenic N flux to coastal ecosystems. The ability of coastal wetlands to retain and transform N is being reduced by wetland losses resulting from land development. Nitrogen retention in coastal wetlands is further threatened by the increasing frequency and spatial extent of saltwater inundation in historically freshwater ecosystems, due to the combined effects of dredging, declining river discharge to coastal areas due to human water use, increased drought frequency, and accelerating sea-level rise. Because saltwater incursion may affect N cycling through multiple mechanisms, the impacts of salinization on coastal freshwater wetland N retention and transformation are not well understood. Here, we show that repeated annual saltwater incursion during late summer droughts in the coastal plain of North Carolina changed N export from organic to inorganic forms and led to a doubling of annual NH(4)(+) export from a 440 hectare former agricultural field undergoing wetland restoration. Soil solution NH(4)(+) concentrations in two mature wetlands also increased with salinization, but the magnitude of increase was smaller than that in the former agricultural field. Long-term saltwater exposure experiments with intact soil columns demonstrated that much of the increase in reactive N released could be explained by exchange of salt cations with sediment NH(4)(+). Using these findings together with the predicted flooding of 1661 km(2) of wetlands along the NC coast by 2100, we estimate that saltwater incursion into these coastal areas could release up to 18 077 Mg N, or approximately half the annual NH(4)(+) flux of the Mississippi River. Our results suggest that saltwater incursion into coastal freshwater wetlands globally could lead to increased N loading to sensitive coastal waters.


Subject(s)
Droughts , Nitrogen/analysis , Seawater , Wetlands , Ammonium Compounds/analysis , Chlorides/analysis , Nitrates/analysis , North Carolina , Sulfates/analysis , Water Movements
9.
Sci Total Environ ; 443: 267-77, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23201647

ABSTRACT

Research into the buffering mechanisms and ecological consequences of acidification in tropical streams is lacking. We have documented seasonal and episodic acidification events in streams draining La Selva Biological Station, Costa Rica. Across this forested landscape, the severity in seasonal and episodic acidification events varies due to interbasin groundwater flow (IGF). Streams that receive IGF have higher concentrations of solutes and more stable pH (~6) than streams that do not receive IGF (pH ~5). To examine the buffering capacity and vulnerability of macroinvertebrates to short-term acidification events, we added hydrochloric acid to acidify a low-solute, poorly buffered (without IGF) and a high-solute, well buffered stream (with IGF). We hypothesized that: 1) protonation of bicarbonate (HCO(3)(-)) would neutralize most of the acid added in the high-solute stream, while base cation release from the sediments would be the most important buffering mechanism in the low-solute stream; 2) pH declines would mobilize inorganic aluminum (Ali) from sediments in both streams; and 3) pH declines would increase macroinvertebrate drift in both streams. We found that the high-solute stream neutralized 745 µeq/L (96% of the acid added), while the solute poor stream only neutralized 27.4 µeq/L (40%). Protonation of HCO(3)(-) was an important buffering mechanism in both streams. Base cation, Fe(2+), and Ali release from sediments and protonation of organic acids also provided buffering in the low-solute stream. We measured low concentrations of Ali release in both streams (2-9 µeq/L) in response to acidification, but the low-solute stream released double the amount Ali per 100 µeq of acid added than the high solute stream. Macroinvertebrate drift increased in both streams in response to acidification and was dominated by Ephemeroptera and Chironomidae. Our results elucidate the different buffering mechanisms in tropical streams and suggest that low-solute poorly buffered streams might be particularly vulnerable to episodic acidification.


Subject(s)
Acids/chemistry , Invertebrates , Tropical Climate , Animals , Hydrogen-Ion Concentration
10.
Ecol Appl ; 22(1): 264-80, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22471089

ABSTRACT

Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions.


Subject(s)
Carbon Dioxide/chemistry , Greenhouse Effect , Human Activities , Methane/chemistry , Nitrous Oxide/chemistry , Wetlands , Carbon Dioxide/metabolism , Environmental Monitoring , Soil/chemistry , Southeastern United States , Time Factors
11.
Oecologia ; 155(2): 311-23, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18049828

ABSTRACT

We examined the hypothesis that high concentrations of secondary compounds in leaf litter of some tropical riparian tree species decrease leaf breakdown by inhibiting microbial and insect colonization. We measured leaf breakdown rates, chemical changes, bacterial, fungal, and insect biomass on litterbags of eight species of common riparian trees incubated in a lowland stream in Costa Rica. The eight species spanned a wide range of litter quality due to varying concentrations of nutrients, structural and secondary compounds. Leaf breakdown rates were fast, ranging from 0.198 d(-1 )(Trema integerrima) to 0.011 d(-1) (Zygia longifolia). Processing of individual chemical constituents was also rapid: cellulose was processed threefold faster and hemicellulose was processed fourfold faster compared to similar studies in temperate streams. Leaf toughness (r = -0.86, P = 0.01) and cellulose (r = -0.78, P = 0.02) were the physicochemical parameters most strongly correlated with breakdown rate. Contrary to our initial hypothesis, secondary compounds were rapidly leached (threefold faster than in temperate studies), with all species losing all secondary compounds within the first week of incubation. Cellulose was more important than secondary compounds in inhibiting breakdown. Levels of fungal and bacterial biomass were strongly correlated with breakdown rate (fungi r = 0.64, P = 0.05; bacteria r = 0.93, P < 0.001) and changes in structural compounds (lignin r = -0.55, P = 0.01). Collector-gatherers were the dominant functional group of insects colonizing litterbags, in contrast to temperate studies where insect shredders dominate. Insect biomass was negatively correlated with breakdown rate (r = -0.70, P = 0.02), suggesting that insects did not play an important role in breakdown. Despite a wide range of initial concentrations of secondary compounds among the eight species used, we found that secondary compounds were rapidly leached and were less important than structural compounds in determining breakdown rates.


Subject(s)
Elements , Lignin/analysis , Phenols/analysis , Plant Leaves/chemistry , Tannins/analysis , Animals , Biomass , Costa Rica , Insecta , Plant Leaves/microbiology , Plant Leaves/parasitology , Rivers/microbiology , Rivers/parasitology
12.
Am J Bot ; 89(2): 270-8, 2002 Feb.
Article in English | MEDLINE | ID: mdl-21669736

ABSTRACT

Within-plant heterogeneity in growth, morphology, and chemistry is ubiquitous, and is commonly attributed to differences in tissue age, light availability, or previous damage by herbivores. Although these factors are important, we argue that plant vascular architecture is an underappreciated determinant of heterogeneity. Vascular architecture can restrict the transport of resources (nutrients, photosynthate, hormones, etc.) to within specific sectors of the plant: this is referred to as sectoriality. Although studies have documented sectoriality in the transport of isotopes and dyes from roots to shoots, the ecological consequences of this sectoriality remain poorly understood. We tested the hypothesis that spatial variation in belowground nutrient availability combined with sectorial transport results in localized "fertilization" of aboveground plant parts and generates heterogeneity in traits important to herbivores. Our split-root experiments with tomato (Lycopersicon esculentum Mill) clearly demonstrate that fertilization to isolated lateral roots generates heterogeneity in leaf morphology, phenolic chemistry, and side-shoot growth. Specifically, leaflets with direct connections to these lateral roots were larger and had lower levels of rutin and chlorogenic acid than did leaflets in other sectors lacking direct vascular connections. Moreover, side-shoot production was greater in the connected sectors. We discuss the implications of this heterogeneity for plant-herbivore interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...